
A Viz Recommendation System: ML Lifecycle at Tableau
Kazem Jahanbakhsh

Tableau Inc.
Vancouver, Canada

kjahanbakhsh@tableau.com

Eric Brochu
Tableau Inc.

Vancouver, Canada
ebrochu@tableau.com

Mya Warren
Tableau Inc.

Vancouver, Canada
mwarren@tableau.com

Xiang-Bo Mao
Tableau Inc.

Vancouver, Canada
xmao@tableau.com

Yogesh Sood
Tableau Inc.

Vancouver, Canada
ysood@tableau.com

ABSTRACT
In the recent years, we have seen a rapid growth in the Enterprise
space adopting ML models on production to improve the quality
of their customers experience. At Tableau, we have released a Viz
recommendation feature by which our customers can find the rele-
vant contents (i.e. visualizations) more efficiently. In this paper, we
cover our research and development effort for the ML models be-
hind the recommendation especially in the area of model life-cycle
management, deployment, and monitoring. The requirements for
our ML recommendation system is different from most scenarios
described in the literature including [1]. This is mainly because
Tableau is an enterprise software company with a large number
of customers where 90% of them install Tableau servers on-prem
and only 10% run the software in the cloud. This means that we
do not have access to our customers data and in most cases cannot
collect ML performance metrics from customers sites. Because of
these constraints, we had to design our own custom solution for
the Hyperparameter optimization to find optimal parameters for
each customer. We also had to design a novel monitoring system
to collect statistics from the training data and the outcome of the
trained models.

CCS CONCEPTS
• Computing methodologies → Machine learning; Model-

ing and simulation; Machine learning.
KEYWORDS

machine learning, recommendation systems, collaborative filter-
ing, model management, hyperparameter optimization, monitoring,
reliability, best practices
ACM Reference Format:
Kazem Jahanbakhsh, Eric Brochu, Mya Warren, Xiang-Bo Mao, and Yogesh
Sood. 2020. A Viz Recommendation System: ML Lifecycle at Tableau. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Tableau 1 is a data visualization software company helping its cus-
tomers to connect to their specific data. It also allows its customers
to analyze and visualize their data and publish/share them. Our
team at Tableau has shipped a new feature called "Viz Recommen-
dation" which recommends the relevant visualizations when a user
logins to their Tableau server. This feature helps users find the
interesting and relevant contents faster.

Over the last several years, we have witnessed a rapid growth in
the use of Machine Learning (ML) systems in areas such as recom-
mendation systems, online advertising, fraud detection, and natural
language processing. Although there has been a significant research
in designing new ML models with higher accuracy, we have not
observed an equivalent amount of research on the challenges that
companies face when they deploy ML systems on production.

For example, the software industry has matured in development
of a number of techniques to verify the correctness of a software
product. These techniques include but not limited to unit testing,
integration testing, and the use of tools such as Splunk 2 and New
Relic 3 to monitor the health of production systems. Despite all the
progress in the software space, there is a lack of best practices for
getting ML systems to production specifically on the areas such as
ML systems verification and monitoring ML systems on production.

In a recent paper by Google, the authors have proposed a list of 28
tests that an ML engineering team should implement for ensuring
the production-readiness of their ML system [1]. The suggested
tests cover four areas: data, model, pipeline, and monitor. While
deploying the Viz recommendation feature, we have taken into
account some of the suggestions in [1].

2 HYPERPARAMETER OPTIMIZATION
Hyperparameter optimization (HPO) is a critical step before de-
ploying any ML model to production. The Viz recommendation
models consist of nine major hyperparameters. One of the unique
challenges specific to Tableau product is that we have to train and
deploy thousands of ML models. Specifically, we need to train and
deploy one model per customer every 24 hours.

At Tableau, we do not have access to our on-prem customers
content usage data. Since running the HPO on customer’s site was
not an option for us, we decided to optimize the ML parameters in

1https://www.tableau.com/
2https://www.splunk.com/
3https://newrelic.com/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Kazem Jahanbakhsh, Eric Brochu, Mya Warren, Xiang-Bo Mao, and Yogesh Sood

a central fashion. First, we collected a sample of Online customers
usage data based on their site’s size. A customer site’s size is defined
as a function of the number of users and contents that the customer
has. Our analysis show that these two numbers have a critical role
in the distribution of content usage data.

Next, we ran a sweep search on the sampled customers sites
data to find parameters’ values that optimize the recommenda-
tion’s precision at 𝑘 . One interesting observation we made was that
we could use the same optimal values for most parameters across
all customers sites without sacrificing the performance. However,
since the matrix factorization is a key component in the recom-
mendation model, we needed to learn the number of latent factors
when decomposing the original content usage matrix to two lower
dimension user-factor and item-factor matrices.

OurML experiments have shown that the number of latent factor
has a significant impact on the performance of the recommendation
systems. We formulated the optimal number of latent factors for a
customer’s site as a function of the number of users and contents
published on the site. As a result, we learned the optimal number of
latent factors. We discovered that the number of factors increases
with the size of site. We coded the learned function as part of the
ML pipeline so that we compute the optimal number of factors
per customer site while training the matrix factorization model.
While running the HPO experiments, we logged all ML models
hyperparameters and metrics to our MLflow [2] server.

3 RECOMMENDATIONS MONITORING ON
PRODUCTION

For deploying thousands of recommendation models where we
do not have direct access to most of the customer sites, we had
to design a new monitoring system. The designed system should
respect the customers data privacy while providing useful insights
for our ML engineers to debug the ML pipeline in case of any
failures on a customer’s site. For achieving this, we decomposed
our monitoring system into three components: (I) data monitoring
part which detects any unexpected pattern in the input data, (II)
monitoring ML models’ scores to identify any unexpected values,
and (III) monitoring the overall performance of the recommendation
system from the customers point of view. In this section, we describe
how we designed each monitoring component.

3.1 Content Usage and Hybrid Models
Monitoring

One key difference between deploying an MLmodel with deploying
a regular software code on production is that an ML model is a
composition of the model’s code and the training data. Therefore, to
evaluate the correctness of an ML-based recommendation feature,
we need to monitor any unexpected pattern in the input data. Any
noise in the data could generate a faulty ML model with an undesir-
able customer impact. In the case of the recommendation feature,
we needed to monitor any undesirable entries in the content usage
data that we use for training our ML models.

Our training data contains four main features: user id, item id,
nviews (i.e. number of times a user has clicked on an item), and
time indicating the last time a user has viewed an item. We have
defined the expected range for every input data feature. So, while

running the ML pipeline, we scan the training data for any feature
value that falls outside of the expected range. We also compute
some high-level statistics from the training data for each customer
site in order to provide more visibility on the site’s data.

One of the models in the recommendation system is the collab-
orative filtering with implicit feedback [3] (i.e. Implicit CF). The
Implicit CF is based on the matrix factorization technique where we
decompose the user-item usage matrix into two lower-dimensional
matrices. With Implicit we learn the users tastes and the underlying
topics for contents by learning users’ and items’ factors. Before
training Implicit CF, we normalize the input usage matrix with
BM25 weighting function. Due to the underlying mathematics of
BM25 4 and the matrix factorization, we have to monitor and log
any patterns in the input matrix that could cause an unexpected
behavior during the training. Specifically, we scan the content us-
age matrix and log any populated row or column. We also log the
sparsity ratio of the matrix. Logging these metrics allows us to
detect and debug any numerical instability caused by the Implicit
CF model. We log all of these violations and statistics in Splunk.

Our recommendation model is a hybrid of the Implicit CF model
and a popularity model. The popularity component is responsible
for modeling the timeliness of contents in the future. We have the
mathematical specification for each model. After running the ML
pipeline on production, we check if the scores of each model fall
in the expected range. Specifically, the scores of Implicit CF model
should always be finite. Therefore, we log any unexpected score
value alongwith its user/content id. This helps our on-call engineers
debug the system while finding the root cause of production issues.
We also log any score from the popularity model which falls outside
of its expected mathematical range.

3.2 Predictions Quality Monitoring
Finally, we have instrumented our front-end code so that we mea-
sure how our users are engaged with the recommended visualiza-
tions. When a user visits their hosted Tableau website, we serve
them a personalized list of contents generated by the recommen-
dation system. Because of our UI instrumentation, if a user takes
an action on one of the recommended visualization, we log all the
necessary meta-data for their click event. We use Google BigQuery
to store all of the collected telemetries along with meta-data such
as user id, view id, and timestamp. We also collect other actions
that a user might take on a recommended visualization such as:
"favourite", "share", or "dismiss". Collecting and storing this teleme-
try data allows our product managers and data scientists to monitor
and detect any regression in prediction quality over time.

4 CONCLUSIONS
In this paper we shed some light on the unique challenges that an
ML engineering team could face while deploying ML models in an
Enterprise company. We discussed some of the novel techniques
that we have developed especially for optimizing hyperparameters.
We also have described the design of our monitoring system by
which we can troubleshoot potential ML production issues. We

4https://en.wikipedia.org/wiki/Okapi_BM25

A Viz Recommendation System: ML Lifecycle at Tableau Conference’17, July 2017, Washington, DC, USA

believe that our findings presented in this paper could be valu-
able to other teams who manage the lifecycle of ML within their
organizations.

REFERENCES
[1] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley. 2017. The ML test score: A

rubric for ML production readiness and technical debt reduction. In 2017 IEEE

International Conference on Big Data (Big Data). 1123–1132.
[2] A. Davidson A. Ghodsi S.A. Hong A. Konwinski S. Murching T. Nykodym P.

Ogilvie M. Parkhe F. Xie M. Zaharia, A. Chen and C. Zumar. 2018. Accelerating
the Machine Learning Lifecycle with MLflow. In IEEE Data Engineering Bulletin,
Vol. 4.

[3] Yehuda Koren Yifan Hu and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining. 263–272.

	Abstract
	1 Introduction
	2 Hyperparameter Optimization
	3 Recommendations Monitoring on Production
	3.1 Content Usage and Hybrid Models Monitoring
	3.2 Predictions Quality Monitoring

	4 Conclusions
	References

