# milq

MSc thesis Eric Brochu

## The Goal

To teach computers to appreciate music by finding the emotional qualities of the music.

## Recasting the problem

 Use Machine Learning to predict the probability that each of a set of text labels should apply.

## How it should work

- Train networks on musical features with accompanying labels
- Then, predict the probability of each label in the label set
- Nirvana's Smells Like Teen Spirit should have high p for ANGST-RIDDEN and WRY, and low p for CAREFREE



#### Add N to (X) -- Party Bag



#### Boards of Canada -- Music is Math





#### Tom Waits -- Clap Hands



#### How it all works

- Audio features are extracted from MP3 files and used with labels to train network for each label.
- Ouputs of those networks become nodes in a Markov Random Field, and belief propogation is run to approximate cultural information to get the final outputs.



#### Feature extraction

- Each MP3 in the training and test set must have features extracted.
- There has been a fair bit of work in the field.
- Selected work from theses by Pampalk (2001) and Golub (2000).
- These work well, but I could easily use some other method.

## Critical band intensity

- Looks at the perceived intensity fluctuation in each critical band at frequencies from 1 Hz to 30 Hz.
- Smoothing and other techniques applied, and matrix is unrolled into a vector.
- Robbie Robertson's Dance DJ on left, The Beatle's Yesterday on right.
- Identifies similarity quite well, even in Euclidian space.





### Variable-term stats

- Second set of features is a collection of statistics generated using signal processing techniques.
- Successfully used in genre classification.
- Gathers statistics involving intensity range, frequency range, frequency uniformity, etc., over various time scales.

## Dimensionality Reduction

- Get 646-dimensional feature vector, high correlated.
- Principal Component Analysis (PCA) is a linear projection that projects to orthogonal dimensions, maximizing the variance.
- Went from 646 audio feature dimensions to 66 principal component dimensions, accounting for 99% of the variance.



#### Labels

- Each song in training set also has a binary label vector.
- 100 labels, corresponding to genre (ROCK, ELECTRONICA), style (TRIP-HOP, INDIE ROCK) and tone (STYLISH, TENSE).
- Extracted from website that categorizes albums using (much larger) set of keywords.
- Assumption is made that all the labels apply to all the songs on the albums (has interesting consequences...).

 Moby, Play: ELECTRONICA, BROODING, SOPHISTICATED, STYLISH, THEATRICAL, ORGANIC, SENSUAL, PASSIONATE, HOUSE, ALTERNATIVE POP/ROCK, TECHNO, CLUB/DANCE, AMBIENT TECHNO

• Nirvana, In Utero: ROCK, BLEAK, ANGST-RIDDEN, CATHARTIC, REBELLIOUS, WRY, EERIE, VISCERAL, THEATRICAL, TENSE/ANXIOUS, AGGRESSIVE, ACERBIC, RECKLESS, NIHILISTIC, PARANOID, OMINOUS, CONFRONTATIONAL, MENACING, INTENSE, ALTERNATIVE POP, ALTERNATIVE ROCK, GRUNGE





## Learning the Labels

- Model is trained for each of the 100 labels.
- Approximately 8000 MP3s used.
- After much experimenting, settled on logistic discriminative network (Neural Net).
- Good for highly nonlinear functions.
- Outputs are probabilities.

## Network Topology



in

weighted inputs

### However...

- NN doesn't work equally well for all labels.
- Things like ROCK and ELECTRONICA are easy.
- Things like WHIMSICAL and WINTRY don't do as well.



## Wouldn't it be nice...

- to let the labels affect each other, leveraging the easy labels to the difficult ones?
- if something is INDIE ROCK and ACERBIC and WRY, it would be ironic if it weren't IRONIC
- this would allow us to approximate the "cultural" context of the music, by knowing that, when in doubt, a song is more likely to be *IRONIC* if it's *INDIE ROCK* than if it's *HOUSE*
- we can make use of the patterns in the labels to do it!

## In theory...

- we could use the frequency of label co-occurrence in the training set
- eg if there were 3 labels and we know
  - p(L1=1|L2=1,L3=1)
  - p(L1=1|L2=0,L3=1)
  - p(L1=1|L2=1,L3=0)
  - *p*(*L*1=1|*L*2=0,*L*3=0)
  - and observe p(LI=I), p(L2=I), p(L3=I)

 but for 100 labels, this would require 100 tables with 2^99 entries each!

## In practice...

- Use only a few labels as parents.
- Using a few most-highlycorrelated labels as parents seems to work pretty well.
- This is a loopy graph.



## **Belief Propagation**

- Loops cause problems
- Loopy BP not guaranteed to converge and has unpleasant side effects.
- Use a modified Loopy that terminates after a single pass.



# 5 Highest-Ranked: Neural Net Only

| Portishead     | Leonard Cohen | Moby              | Moby      |
|----------------|---------------|-------------------|-----------|
| Wandering Star | I'm Your Man  | Find My Baby      | Porcelain |
| Soundtrack     | Precious      | Soundtrack        | Manic     |
| Literate       | Jazz          | House             | Gloomy    |
| Precious       | Laid-Back     | Party/Celebratory | Tense     |
| Organic        | Organic       | Precious          | Raucous   |
| Druggy         | Folk-Rock     | Hip-Hop           | Soothing  |

## 5 Highest-Ranked: NN + MRF

| Portishead        | Leonard Cohen   | Moby              | Moby          |
|-------------------|-----------------|-------------------|---------------|
| Wandering Star    | I'm Your Man    | Find My Baby      | Porcelain     |
| Earnest           | Autumnal        | Electronica       | Electronica   |
| Reflective        | Reflective      | Playful           | Club/Dance    |
| Wistful           | Wistful         | Somber            | Techno        |
| Autumnal          | Cathartic       | Cynical/Sarcastic | Somber        |
| Adult Alternative | Alternative Pop | Aggressive        | Calm/Peaceful |

## Applications & Future Work

- User study.
- Music Visualization
- Music Exploration/ Recommendation
- Improved feature extraction

