
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2010)
M. Otaduy and Z. Popovic (Editors)

A Bayesian Interactive Optimization Approach to Procedural
Animation Design

Eric Brochu Tyson Brochu Nando de Freitas

University of British Columbia

Abstract
The computer graphics and animation fields are filled with applications that require the setting of tricky param-
eters. In many cases, the models are complex and the parameters unintuitive for non-experts. In this paper, we
present an optimization method for setting parameters of a procedural fluid animation system by showing the user
examples of different parametrized animations and asking for feedback. Our method employs the Bayesian tech-
nique of bringing in “prior” belief based on previous runs of the system and/or expert knowledge, to assist users in
finding good parameter settings in as few steps as possible. To do this, we introduce novel extensions to Bayesian
optimization, which permit effective learning for parameter-based procedural animation applications. We show
that even when users are trying to find a variety of different target animations, the system can learn and improve.
We demonstrate the effectiveness of our method compared to related active learning methods. We also present a
working application for assisting animators in the challenging task of designing curl-based velocity fields, even
with minimal domain knowledge other than identifying when a simulation “looks right”.

Categories and Subject Descriptors (according to ACM CCS): Learning [I.2.6]: Parameter Learning.—User Inter-
faces [H.5.2]: Interaction Styles.—Three-Dimensional Graphics and Realism [I.3.7]: Animation.—

1 Introduction

Procedural methods for generating animation have long been
used by visual effects and games studios due to their effi-
ciency and artist controllability. However, this control comes
with a cost: a set of often unintuitive parameters confronts
the user of a procedural animation system. The desired end
result is often identifiable by the user, but these parameters
must be tuned in a tedious trial-and-error process.

For example, realistic animation of smoke can be achieved
by driving a particle system through a simple combination
of vortex rings and curl noise [BHN07]. However even these
two relatively simple procedural methods are influenced by
several parameters: The velocity, radius and magnitude of
the vortex rings, and the length scale and magnitude of the
curl noise. Adding more procedural “flow primitives”, such
as uniform and vortical flows, sources and sinks [WH91],
turbulent wind [SF93], vortex particles [SRF05], and vortex
filaments [AN05] can produce a wider variety of animations,
but each of these primitives carries its own set of associated
parameters. These parameters can interact in subtle and non-

intuitive ways, and small adjustments to certain settings may
result in non-uniform changes in the appearance.

Brochu et al. [BGdF07, BdFG07] propose a Bayesian op-
timization technique to assist artists with parameter tuning
for bidirectional reflectance distribution functions (BRDFs).
In their iterative scheme, the algorithm selects two sets of
parameters and generates example images from them. The
user selects the preferred image and the algorithm incorpo-
rates this feedback to learn a model of the user’s valuation
function over the domain of parameter values. Given this
valuation function, the algorithm is able to select parame-
ters to generate simulations that are likely to be closer to the
ones wanted by the artist. The process is repeated until the
user is satisfied with the results.

During the development of a procedural smoke anima-
tion system, we found ourselves with a parameterized sys-
tem with 12 continuous parameters. Setting these was a chal-
lenge for the developers, let alone other users, so we looked
to adapt [BdFG07]. In the process, though, we found that the
model as presented was unsuitable for our procedural anima-
tion. In particular, we identified several limitations:

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

Figure 1: The animation gallery in action. An animator is searching the space of possible parameters to find an animation.
He or she provides preferences over a gallery of animations created procedurally from different parameter settings. The system
uses these preferences to automatically learn a model of what the user is searching for and to propose a new set of animations.
The new gallery automatically balances the exploration-exploitation tradeoff between finding improvements on animations the
user likes and exploring new settings. It also incorporates user constraints about what parameters or ranges to search. When
acceptable parameters are found, a higher-quality animation can be generated offline. As the tool is used, it automatically
learns the properties of the parameter space that generate good animations — the more it is used, the better able it is to guide
new users.

• The settings of the kernel hyperparameters, which control
the smoothness of the objective function on each of the
parameters, has a very large impact on the quality of the
optimization. [BdFG07] has an expert set these, but our
best attempts to do so were simply not good enough. How-
ever, approaches in the literature for automatically setting
these values require far more data than we have available.
• Many regions of the parameter space (combinations of

parameter ranges) never produce good animations. How-
ever, under the zero-mean Bayesian optimization model,
until the user supplies evidence, parameter settings in
these regions are no less likely to be selected than ones
that are frequently chosen by users. Particularly with the
relatively large number of parameters we use, this requires
users to repeatedly view and rate uninteresting settings
until evidence is accrued, instead of first focussing on the
most promising areas.
• The earlier model does not offer a way of incorporating

user expertise. After even a small amount of time spent
using the system, users had developed a good enough
semantic understanding of certain parameters that they
wanted to either set parameters to a specific value, or re-
strict the optimization to a user-defined region.
• The pairwise interface, in which two instances are shown

side-by-side, seemed inefficient to users who felt they
would rather select animations from a larger gallery of
instances.

With these shortcomings in mind, we extended the
Bayesian optimization approach with several new features,
which we incorporate into a novel application for assisting
animators (Figure 1). The interface allows users to view four
animations simultaneously, and to manually set ranges of pa-
rameters (including setting them to a single value). Our pri-
mary improvement, however, is a new hierarchical Bayesian
method for incorporating data from previous users of the

system to adaptively tune model hyperparameters. These hy-
perparameters control aspects such as the relative impor-
tance of changing settings of the different parameters, and
the belief, before evidence is added, that an area of the space
is unlikely to generate good animations. The problem of
learning hyperparameters is usually difficult or impossible
for small data sets, such as the ones generated in a single user
session. We get around this by treating the problem as one
of tracking the distributions of the hyperparameters across
user sessions. As different users employ the system to find
different animations, the system automatically improves and
adapts.

In Section 2, we present the Bayesian optimization
model. In Section 3, we introduce novel extensions in which
the hyperparameters and mean function of the model are au-
tomatically learned between runs, with data from different
users constantly added. In Section 4, we employ this learn-
ing model in an animation design gallery application that
allows artists and non-expert users to find desired animation
parameters without any knowledge of the underlying model.
We present experimental results in Section 5, on synthetic
functions and real users, and offer conclusions in Section 6.

1.1 Related work

In the computer graphics literature, the work of Talton et
al. [TGY∗09] is probably most similar to ours. They intro-
duce a collaborative system which uses data from a body
of users to learn spatially-varying parameters, though their
work is still quite distinct from ours. Their model is based on
density estimation in high-dimensional spaces, whereas we
are interested in optimizing individual user valuation. Their
approach is also intended as a novel interface to aid users
who are unfamiliar with the system, while our approach is
intended to work in conjunction with more traditional slider
manipulation approaches to finding parameters. The Design

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

Gallery [MAB∗97] interface for animation and the gallery
navigation interface for reflectance functions [NDM06] are
other artist-assistance tools with some similarity to ours.
They both use non-adaptive heuristics to find the set of input
parameters to be used in the generation of the display. We de-
part from this heuristic treatment and instead present a prin-
cipled probabilistic decision making approach to model the
design process, which can be studied using the existing tools
of machine learning and optimization, and adapted to a va-
riety of design scenarios. Psychoperceptual preference elic-
itation has been previously done in graphics in the context
of image-based rendering [KYJF04], as well as evaluation
of tone-mapping operators for high dynamic range (HDR)
images [LCTS05].

2 Bayesian optimization for preference galleries

The process of tweaking parameters to find a result that
looks “right” can be seen as akin to sampling a perceptual
objective function and searching the parameter space to find
the best result. This process is, in essence, solving an op-
timization problem. Our objective function is the psychop-
erceptual process underlying judgment — how well a real-
ization fits what the user has in mind. In the econometrics
domain, this is often called the valuation function.

In the case of a person rating the suitability of an anima-
tion (a procedurally-generated fluid animation in our case),
each sample of valuation involves creating an animation with
the given parameters and asking a human to provide feed-
back, which is interpreted as the function response. This is a
very expensive class of functions to evaluate! Furthermore, it
is in general impossible to even sample the function directly
and get a consistent response from users. Asking humans to
rate an animation on a numerical scale has built-in problems
— not only will scales vary from user to user, but human
evaluation is subject to phenomena such as drift, where the
scale varies over time, anchoring, in which early experiences
dominate the scale [PBJ93]. Some of these problems can be
alleviated by asking users to select binary preferences be-
tween instances [McF01], but this comes with its own costs
and limitations. In our work, we propose the use of more
flexible preference galleries to obtain feedback from the an-
imators. The interface will be described in Section 4.2. To
present the models and algorithms, which is the focus of the
current section, it suffices to say that this interface enables
us to gather the user’s preferences in the form of discrete
choices.

More formally, the dataset gathered using the gallery
approach consists of ranked pairs D = {rk � ck; k =
1, . . . ,M}, where the symbol� indicates that the user prefers
r to c. Assuming that the user has already provided some
feedback, we use x1:N = {x1,x2, . . . ,xN}, xi ∈ X ⊆ Rd , to
denote the N elements in the training data. Each element xn
is a specific parameter choice, so that rk and ck correspond
to two elements of x1:N . Our goal is to predict the next item

x which we believe will have the highest user valuation u(x)
in as few comparisons as possible.

Our probabilistic model for specifying preferences in
terms of the latent valuation function u(·) is the one ad-
vocated by [CG05]. It is a classical model for relating bi-
nary observations to a continuous latent function, which is
known as the Thurstone-Mosteller law of comparative judg-
ment [Thu27,Mos51]. For completeness, we review it briefly
here. We model the valuation functions u(·) for r and c as
u(rk) = f (rk) + erk, u(ck) = f (ck) + eck where the noise
terms are Gaussian: erk,eck ∼ N (0,σ2). Under this utility
model, the likelihood that item r is preferred to item c is
given by:

P(rk � ck) = P(u(rk) > u(ck)) = Φ(dk) ,

where dk = f (rk)− f (ck)√
2σ

, and Φ is the cumulative function of
the standard Normal distribution.

In order to estimate the posterior distribution of the latent
function p(f|D), which is the optimal Bayesian estimate of
the unknown function f (·), we also need to specify a prior
on f (·). [BdFG07] assign a nonparametric Gaussian process
prior to the unknown mean valuation: f (·)∼ GP(0,K(·, ·)).
That is, at the N training points:

p(f) = |2πK|−
1
2 exp

(
−1

2
fT K−1f

)
,

where f = { f (x1), f (x2), . . . , f (xN)} and the symmetric
positive definite covariance K has entries (kernels) Ki j =
k(xi,x j) = exp(θ‖xi− x j‖). With reference to the hyperpa-
rameter θ, their paper states: “Initially we learned these pa-
rameters via maximum likelihood, but soon realized that this
was unsound due to the scarcity of data. To remedy this, we
elected to use subjective priors using simple heuristics, such
as expected dataset spread.” In this respect, we depart signif-
icantly from their approach. Here, we will assume a hierar-
chical nonparametric prior on f (·). The hyperparameters of
this prior will be learned by taking into consideration mul-
tiple animation trials. This construction will be discussed in
detail in Section 3.

Aside from the prior construction and the use of pref-
erence galleries, we follow the approach of [BdFG07] for
Bayesian optimization. We therefore refer the interested
reader to that paper for details and focus on a high-level de-
scription of the approach. The first step is to compute the
posterior distribution via Bayes rule:

p(f|D)∝ p(f)
M

∏
k=1

p(dk|f). (1)

The posterior is not analytical, but can approximated us-
ing Laplace’s method, expectation propagation or Monte
Carlo [RW06]. After experimenting with Laplace’s method
[CG05], we ended up choosing a simpler alternative, which
we found to be more numerically efficient, stable, easier to
code, and which delivers similar performance in our pref-
erence gallery setting: We simply approximate p(f|D) with

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

a Dirac-delta mass at its mode fMAP. The mode is easily
found by calculating the derivative of the log-posterior of
equation (1).

For any possible instance xn+1, the predictive distribution
p(f (xn+1)|D) can be easily obtained using the matrix in-
version lemma [RW06]. This distribution has the following
mean and variance:

µ(xn+1) = kT K−1fMAP

s2(xn+1) = k(xn+1,xn+1)−kT K−1k,

where kT = [k(xn+1,x1) · · ·k(xn+1,xN)]. As we will see in
Section 3, our prior will give rise to a slightly different pre-
dictive distribution.

The last step of the Bayesian optimization approach is to
use a statistical measure of improvement to decide where
to sample next. That is, after computing the predictive dis-
tribution, we need to decide what simulations to show the
animator. The predictive distribution will enable us to bal-
ance the tradeoff of exploiting and exploring in this process.
When exploring, we choose points where the predicted vari-
ance is large. When exploiting, we choose points where the
predicted mean is large (high valuation). This tradeoff be-
tween exploration and exploitation is balanced with a classi-
cal measure of expected improvement [JSW98]. Let x+ de-
note the point of the highest estimate of the predictive dis-
tribution thus far. That is, µ(x+) is the highest valuation for
the data provided by the individual. For simplicity, we will
use x to indicate xn+1. [JSW98] define the improvement over
the current best point as I(x) = max{0,µ(x)−µ(x+)}. This
results in an expected improvement of

EI(x) =
{

(µ(x+)−µ(x))Φ(d)+ s(x)φ(d) if s > 0
0 if s = 0

where φ is the standard Normal density and d = µ(x+)−µ(x)
s(x) .

To find the point at which to sample, we still need to max-
imize the constrained objective EI(x). Unlike the original
unknown objective function, EI(·) can be cheaply sampled,
so we can use conventional optimizers. We use DIRECT
[JPS93], a deterministic, derivative-free optimizer. The over-
all approach is summarized in Algorithm 1.

Algorithm 1 Bayesian optimization for animation galleries
1: Let n = 0 and NG be the number of instances in the gallery

interface, and choose an initial set of parameters, x1:NG.
2: repeat
3: Generate gallery of animation instances from the parame-

ters.
4: Record k user preferences {r1:k,c1:k} from the set

{xn+1:n+NG} and add to D.
5: Compute the predictive distribution µ(·), s2(·).
6: Let n = n + NG.
7: Compute a new set of NG parameters {xn+1:n+NG} by iter-

atively maximizing the expected improvement function.
8: until Animator is satisfied

3 Learning from multiple sessions

Unlike traditional approaches to Bayesian optimization, we
take into account the fact that the process of optimization
is repeated many times either by the same animator or by
different animators. Our central hypothesis is that the in-
terests of animators are regular. That is, there are only so
many kinds of smoke that people care about when produc-
ing animations. The standard zero-mean Gaussian process
(GP) prior fails to capture this. In our approach, on the other
hand, we use the results of previous sessions (optimizations)
to learn the hyperparameters of a semi-parametric prior for
the current trial. This is crucial to both reduce the number of
user interactions and to scale the method to higher dimen-
sions.

In the remainder of this paper, we use iteration to refer
to a single cycle of Bayesian optimization — maximizing
the EI to find a label or preference candidates, getting labels
of preferences, and updating the model. Session refers to an
entire run of the optimization, from zero data until a termi-
nation condition is reached. Instance refers to an animation
generated from a specific set of parameters.

We adopt the following semi-parametric Gaussian process
prior:

f (·)∼ GP(m(·),K(·, ·)). (2)

In this model, the mean m(·) is represented with radial basis
functions (RBFs) with centers c and coefficients α:

m(x) = B(x,c)α =
p

∑
j=1

g(‖x− c j‖)α j.

For the bases g(·), we adopt the typical choices: splines,
Gaussians, multi-quadrics and so on. We refer the reader to,
for example, [Bis06] for an introduction to RBF approxima-
tion.

In addition, we adopt a more sophisticated representation
for the kernels known as automatic relevance determination
(ARD) [RW06]. The actual expression is:

k(xi,x j) = exp

(
∑
`

‖xi,`− x j,`‖
θ2

`

)
+σ

2
δi j,

where ` is an index over the components of the vector xi
and δi j is the Kronecker-Delta function. Using an ARD ker-
nel is critical, as it allows the smoothness to be determined
independently along each dimension. Intuitively, if a partic-
ular θ` has a small value, the kernel becomes independent of
the `-th input, effectively removing it automatically. Hence,
irrelevant dimensions are discarded.

We propose to learn the RBF parameters (c,α) as well as
the kernel parameters (θ,σ) using data gathered from pre-
vious optimizations. Note that the conventional approach
to setting these is to maximize the log-likelihood of the
model within a specific optimization run. This method works
well for many application of GPs, but unfortunately for our
application, it is known to work poorly when the number

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

of training data is small (exactly the situation we are in).
The sparsity of data in the space can lead to the likelihood
function becoming very flat on some dimensions, or even
monotonically increasing to infinity. This can lead to low-
quality models or ill-conditioned covariance matrices. Pre-
vious methods have dealt with this by initializing the data
set with a large number of random samples from a Latin hy-
percube [SWN03], or having a system expert select values
for the hyperparameters or hyperposteriors [Liz08], neither
of which is suitable to our application.

Our insight is that every time the application is used, a
related model is trained. While different runs might involve
users with different simulation goals, if we record the final
user dataD of each run, this can be used to generate a distri-
bution over the hyperparameters, which identifies some hy-
perparameter settings as more likely than others, even before
a new user starts using the system. This distribution can be
tracked across user sessions, so that as the system is used in
different ways, the distribution will come to reflect that fact.
It is important to emphasize that this does not directly affect
the actual parameters of the animation — that is determined
by the user’s feedback.

We estimate the locations of the basis centers ĉ by clus-
tering the parameters of previous simulations using k-means.
Intuitively, the resulting clusters capture the different types
of smoke that animators are typically interested in. By con-
ditioning on ĉ, the coefficients α can be obtained analytically
using standard Bayesian conjugate analysis. Specifically, we
place a Gaussian hyper-prior on them: α ∼ N (0,δ2) with
regularizer δ

2. We use Bayes rule to combine this prior with
the Gaussian model of equation (2) evaluated at the training
data, to obtain the following estimate of α:

α̂ =
(

BT K−1B+δ
−2Ip

)−1
BT K−1fMAP,

where B denotes an N× p matrix of bases functions evalu-
ated at the N training data and p locations ĉ. By approximat-
ing the posterior of α with a Dirac-delta mass at α̂, the mean
and variance of the predictive distribution become:

µ(x) = B(x, ĉ)α̂+kT K−1
(

fMAP−BT
α̂

)
s2(x) = k(x,x)−kT K−1k.

We now turn our attention to the process of inferring the
kernel parameters θ and σ. In our user application, these
have intuitive interpretations with regard to the impact on
the user — θ is the relationship between distance in the pa-
rameter space and the valuation function, and σ is the noise
or uncertainty associated with the user’s ratings. We will re-
fer to these as the model hyperparameters, with the generic
symbol β.

We can model the sequence of optimizations conducted
by the same animator or different animators using a dynam-
ical state space model [DdFG01]. In this dynamic model,
the hyperparameters β correspond to the unknown states.

The state space model consists of an initial belief p(β0), a
stochastic evolution process p(βt |βt−1) and an observation
component p(ft |βt). To be precise, the observation ft is in
fact the maximum a posteriori estimate fMAP derived from
the user feedback as outlined in the previous section, but we
drop the MAP superscript to simplify the notation. Our goal
is then to compute the optimal filtering distribution p(βt |f1:t)
given that t runs of the application have taken place. This
distribution is intractable, but may be approximated with a
Monte Carlo histogram estimator with samples obtained us-
ing a particle filter [DdFG01], as illustrated in Algorithm 2.

Algorithm 2 Particle Filter for Hyperparameter Learning

1: For i = 1, . . . ,N sample β
(i)
0 ∼ p(β0).

2: Let t = 1.
3: while True do
4: For i = 1, . . . ,N sample β̃

(i)
t ∼ p(βt |β

(i)
t−1)

5: For i = 1, . . . ,N evaluate importance weights w̃(i)
t =

p(ft |β̃
(i)
t) and normalize them.

6: Resample with replacement N particles (β(i)
0:t , i = 1, . . . ,N)

from the set (β̃
(i)
0:t , i = 1, . . . ,N) according to the importance

weights w̃(i)
t .

7: t = t + 1
8: end while

We treat the hyperparameters as independent, and use a
separate dynamic Gaussian diffusion model for each hyper-
parameter. (This is done for efficiency and interpretability
— we could theoretically model the hyperparameters using
a single particle filter if necessary.) The dynamic diffusion
model allows the hyperparameters to converge to values that
exhibit some random drift over time. We don’t eliminate this
drift intentionally as we believe it is useful to have a nonsta-
tionary model component in our application domain.

At the beginning of each user session, we set the ker-
nel hyperparameters to the particle filter means estimated
from previous sessions. After each user session, we use the
inferred function f to compute the fitness of each particle
according to the following non-linear Gaussian observation
model:

p(ft |βt) = |2πK(β)|−1/2 exp
(
−1

2
fT K(β)−1f

)
.

In this expression, we have emphasized the dependency of
K on the kernel hyperparameters β for clarity.

Algorithm 2 shows the particle filter method of updat-
ing for hyperparameters β. This is a simple particle filter,
where the importance sampling proposal is the transition
prior p(βt |βt−1). If one has prior knowledge about the hy-
perparameters, it is possible to incorporate this into the de-
sign of more sophisticated proposal distributions.

4 A Bayesian design gallery for procedural animation

We apply the Bayesian optimization model as the learning
engine for our procedural animation design tool. Our con-

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

tribution to the design problem is a “gallery” approach in
which users can view several animations generated from
multiple parameters, and provide feedback in the form of
real-valued ratings indicating how close an animation is to
what they are looking for. In practice, the first few examples
presented to the user will be points of high uncertainty, since
little of the space is explored (that is, the model is very un-
certain about the user’s valuation criteria). Later galleries in-
clude more examples of high predicted valuation, as a model
of the user’s interest is learned. [BdFG07] presented an in-
terface based on a pairwise gallery of two images, where the
user indicates simple preference, and showed this was a su-
perior approach to directly rating instances. However, other
work in graphics and animation, such as the design gallery
of [MAB∗97] has used galleries of multiple instances. We
introduce and study a gallery of multiple instances on which
preferences can be defined, and investigate the effect of
adopting a 2-panel or a 4-panel gallery.

4.1 Procedural animation

While the focus of this paper is on novel Bayesian optimiza-
tion techniques for learning model parameters, we were mo-
tivated by a specific animation problem. As the gallery inter-
face and later experiments use this problem, we present our
procedural animation method here.

We produce smoke animation by driving a set of passive
marker particles through a procedurally-generated velocity
field. This velocity field is generated by taking the curl of a
(vector-valued) potential function, which automatically en-
sures that the resulting velocity field is divergence-free, an
important characteristic of fluid motion. There are two main
components to this potential field, which we linearly com-
bine: the contribution due to a set of vortex rings, and a spa-
tially varying noise function.

The potential function of a vortex ring perpendicular to
the y axis with center h, radius r, at a point in space z is
given by

ψv(z) =
1

(r−d)2 +2rd
< z3,0,−z1 >,

where d = ‖z− h‖. The potential function associated with
curl noise [BHN07] is a spatially and temporally continuous
noise function ψn(z) = n(z, l), where l is the length scale of
noise. The velocity field is then the curl of the linear combi-
nation of these two potential fields:

v(z) =∇× (Γψv(z)+ωψn(z)).

This simple model results in at least four parameters
which must be tuned: the radius of a vortex ring, r,
the length-scale of the noise function, l, and the relative
strengths of each potential function, Γ and ω. Additionally,
our examples use vortex rings which move upward with
some velocity, and are generated at the origin with some fre-
quency, resulting in two additional parameters per ring. We
model a total of four distinct curl noise layers, for a total of

8 parameters, though the use of the curl noise layers is not
required for all animations, and they can be disabled by set-
ting both parameters to 0. Since this method is procedural,
and not a simulation, the variety of animations capable of
production is fundamentally limited, though still quite large.

4.2 Gallery

The gallery interface (Figure 1) is our user-facing parameter-
optimization tool. Four animations are shown at a time, se-
lected using Schonlau’s method [SWJ98] of simulating up-
dates to the GP by iteratively maximizing the EI and updat-
ing the covariance matrix for maxEI (since in a GP, the co-
variance is independent of observations). At any stage, the
user can set the parameters to a fixed value or change the
range, which directly sets the bounds of the optimization of
the EI function. This permits the user to set up useful work-
flows. For example, users can start with several free param-
eters and view examples until they find one similar to their
target and fix most of the parameters, using the model to
help set one or two “tricky” remaining values. Alternatively,
the user can adjust parameters until they reach a point where
they are frustrated with one or more and then use the sys-
tem to help find it. In any case, the goal is not to remove
or restrict the process of manually setting parameters, but to
augment it.

Animations are generated using the procedural system de-
scribed above, during a non-interactive “animation” phase.
At each frame of the animation, the flow primitives are up-
dated, and new ones are spawned if necessary. New particles
are spawned at a source, advected according to the set of
flow primitives, and all particle positions for a given frame
are written to disk. The animation can then be previewed
in an OpenGL window by streaming the particle data from
disk. After each run of the application, the final data vec-
tor D1:n for the run is logged and the RBF parameters and
distributions of the hyperparameters (c,α,θ,σ) are updated
(Section 3). The user has the option to skip this step if de-
sired.

5 Experiments

The Bayesian optimization approach has been found to be
very efficient for expensive objective functions [JSW98,
Sas02,Liz08], which suggests it is suitable to our task. How-
ever, there are a number of other factors we wish to test,
including the impact of learning the hyperparameters, the
effect of using an RBF model as prior on the mean and
the effectiveness of using preferences instead of ratings. We
also need to confirm the results of our experiments using the
gallery application and real users.

We have several specific aspects of our system which we
wish to test. In the first set of experiments (Sections 5.1
and 5.2), we study the behaviour of our strategies for learn-
ing the kernel hyperparameters and mean function when ap-
plied to a known mathematical function. By not having a
user in the loop and adopting functions whose optima are

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

known, we are able to measure performance precisely. In
Sections 5.3 and 5.4, we bring users into the loop with our
animation gallery application (Section 4.2). While we know
our methods work in a simulated environment, we want to
make sure that some overlooked aspect of human psychol-
ogy or human-computer interaction does not cause our as-
sumptions to be violated for the application.
• In Section 5.1, we test the particle filtering algorithm.

We use a standard test function for automatic testing, and
show how even from a poor initial distribution, the algo-
rithm converges to good hyperparameter settings, and that
this greatly improves optimization performance.
• In Section 5.2, we use the same test function to study the

effect of learning the GP mean. We show how an RBF
model trained on increasing amounts of data improves op-
timization performance.
• In Section 5.3, we track the performance of users on a

task, in which they were shown an expert-generated tar-
get animation and used variations of the interface to find
it. In addition, we test the effect of learning the hyperpa-
rameters with humans in the loop, while keeping the GP
mean fixed.
• Finally, in Section 5.4 users employ the application to find

their own animations, both with and without an RBF mean
function. We measure performance with a simple ques-
tionnaire.
When x? = argmaxx f (x) is known, we can measure the

error, which we define as the deviance of a selected set of
parameters from x?, projected onto a unit hypercube to ac-
count for the different scales of the parameters. When the
max is known, we can also measure performance using the
“gap” metric [HANZ06]

G =
f (x f irst)− f (x+)
f (x f irst)− f (x?)

,

where f (x f irst) is the value of the first function sample (or
the case where multiple samples were used on the first it-
eration, the max of that set). G will therefore be a number
between 0, indicating no improvement over the initial sam-
ple (f (x+) = f (x f irst)), and 1, meaning that the incumbent
is the maximum (f (x+) = f (x?)).

5.1 Hyperparameter learning

In this section, we evaluate the performance of the particle
filter (Algorithm 2) when optimizing a test function with
known maxima: the Shekel 5 function [She71], which is a
very common test function in the field of global optimiza-
tion. The function has 4 dimensions, 5 local maxima and 1
global maximum. Because of its dimensionality and fairly
steep modes, it is difficult to optimize with naive techniques,
but we can expect a well-designed general global optimizer
to offer measurable improvement, even if it doesn’t find the
global maximum. This makes it ideal for study with the gap
metric.

We fix the GP mean to zero and focus on studying the

Figure 2: Learning ARD kernel width hyperparameters us-
ing a particle filter. The upper subfigure shows the evolution
of θ1:4 over 25 time steps. The lower subfigure shows the per-
formance measure G corresponding to these hyperparame-
ters. It also shows the same measure using hyperparameters
learned by maximum likelihood.

effect of learning only the ARD kernel width hyperparam-
eters, β = (θ1:4). In this optimization setting, the observa-
tions are noise-free (we will examine the effect of learn-
ing the mean function in Section 5.2, and the interaction
between noise and kernel width hyperparameters has been
well-studied elsewhere [SWN03, Liz08]). We train the par-
ticle filters for 25 time steps t as shown in Algorithm 2. At
each t, we gather an observation vector ft by running 20 iter-
ations of Bayesian optimization, using the mean of the pre-
dictive distribution p(βt |f1:t−1). The simulation of ft is not
deterministic because of random initialization. The proce-
dure continues as detailed in Algorithm 2.

We store the 4 mean trajectories for 25 time steps,
θ̂1:4,1:25, computed with the particle filter. For each of these
trajectory values, we run 20 iterations of Bayesian opti-
mization and record the mean and variance of G (G20). We
adopted 20 iterations because this is roughly the point at
which users of the animation system start to quit if they
do not see significant improvement. We repeated the experi-
ment 10 times to obtain confidence estimates. The evolution
of G20 is shown in the lower plot of Figure 2. For compari-
son, we also show G20 for hyperparameters learned by max-
imizing the likelihood directly.

The results show that the particle filter not only converges
at a reasonably fast rate, but also leads to significant im-
provements in optimization performance.

5.2 Learning the mean function with RBFs

To test the impact of the mean function on the optimization,
we again use the Shekel 5 test function. We fix the hyperpa-
rameters to the best values found with a particle filter. Here,
we focus on studying the effect of varying dataset sizes to
learn the RBF GP mean within this optimization task. The

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

Figure 3: Effect of adding more data to compute the RBF
prior mean. We run Bayesian optimization to find the global
maximum, with G as a measure of the optimization perfor-
mance. Solid lines are the mean performance at each itera-
tion and error bars show the variance. Clearly, learning the
mean function improves optimization performance.

hypothesis is that with more data one should learn a better
GP mean function and hence do better at optimization.

To learn the α and c values of the RBF model, we sam-
pled the test function using Latin hypercube sampling and
additive Gaussian noise ε∼N (0,0.5). We then optimize the
function iteratively by selecting the point of maximum EI,
evaluating f , and updating the GP. We ran tests using 0, 50
and 500 data to train the RBF model. We set the size of the
RBF expansion at p = 25 bases. We run the experiments for
50 iterations, which we’ve observed to be an upper bound on
the most typical users would use the animation system. Fig-
ure 3 shows that an RBF model trained on 50 noisy samples
offers striking improvement on the rate of optimization, and
500 samples even more.

5.3 Gallery interface performance

The previous experiments show clearly that particle filters
and RBF models for the GP mean result in significant im-
provements in Bayesian optimization of known mathemati-
cal functions. To test the performance of components of the
system with human beings in the loop, we would like to sim-
ulate the task of an animator looking for a specific animation.
The difficulty with measuring performance in these anima-
tion tasks is that we don’t know the animator’s precise inten-
tions. That is, we don’t know the objective function’s global
maximum. To overcome this difficulty, an expert generated
a set of five distinct animations, for which the target parame-
ters were known. Users were shown one of the target anima-
tions, picked at random, and asked to find the correspond-
ing target parameters using different variations of the inter-
face. When users found an animation they felt was “close
enough”, they could select it. Subsequently, the application
terminated and logged the number of iterations, distinct an-
imations viewed, and the error. A GP zero mean function

was used so as to avoid giving unfair advantage to the target
animations. We tested the following scenarios:

• expert-set hyperparameters (expertHP) Our work is an
extension of [BdFG07], and so we wish to compare our
work to that as directly as possible, even though the ap-
plications are different. To do this, we (a) set the kernel
hyperparameters θ and σ to expert-selected values; (b)
restricted the gallery to 2 windows, one generated from
argmaxx EI(x) and one from argmaxx µ(x).

• particle filter hyperparameters (PFHP) We compared
the expert-set hyperparameter model to a pairwise model
which is identical except that it uses hyperparameters
learned with a particle filter trained on user sessions, as
described in Section 3.

• ratings We repeated the rating experiment of [BdFG07]
on our application to see if there was any undiscovered
aspect of our problem that might make it easier to find
the target by rating instances numerically. In this case, the
user was shown a single animation at a time, correspond-
ing to argmaxx EI(x) and asked to rate it with a “score”
between 0 and 1.

• 4-gallery Using the same hyperparameters as PFHP, for
comparison purposes, we generated a gallery of 4 in-
stances over which the user could enter preferences. Once
all preferences were entered, they were added to the
model, and a new set of gallery parameters selected.

As shown in Table 1, the hyperparameters learned by
PFHP result in a significant improvement in both the num-
ber of iterations and animations viewed over the expert hy-
perparameters (expertHP), and result in a slightly lower er-
ror. This represents a given by substantial savings in human
effort, and eliminates the risk involved in having a human
expert attempt the difficult but crucial task of setting the hy-
perparameters.

The 4-gallery approach requires viewing more animations
than pairwise, but is the most accurate, while direct rating
performs poorly, as predicted. (Of course, it should be no
surprise that the 4-gallery involved more instances, as at
each iteration, 4 animations are generated, rather than 2.)
The pairwise preferences produced higher error, but required
fewer total animation views. Anecdotally, users reported dif-
ficulty in using the pairwise preferences due to the limited
feedback available. We suspect this lead to the very large
standard deviations on the error. Based on these results, the
case for using a gallery of several instances is significant, but
not as clear-cut as the case for learning the hyperparameters
and mean function. If animating is cheap and the cognitive
effort of rating is low (as in our application), a large gallery
offers lower error. If the goal is to minimize the total number
of animations generated and rated, using pairs is preferable.
Numerically rating individual animations, however, suffers
in both accuracy and the number of instances. Clearly, if we
want to make the best use of user time, preferences are the
most suitable choice.

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

scenario gallery size parameters sessions iterations animations error
expertHP 2 4 20 12.43 ± 4.45 22.66 ± 7.35 0.44 ± 0.30
PFHP 2 4 20 8.45 ± 2.81 14.44 ± 5.03 0.36 ± 0.34
ratings 1 4 20 28.35 ± 5.13 28.35 ± 5.13 0.31 ± 0.26
4-gallery 4 4 30 7.57 ± 4.67 24.85 ± 15.48 0.22 ± 0.17
manual (novice) 1 12 3 35.33 ± 7.13 35.33 ± 7.13 2.02 ± 0.35
manual (expert) 1 12 5 28.40 ± 5.95 28.40 ± 5.95 0.91 ± 0.30
4-gallery + manual 4 12 20 5.38 ± 2.63 19.14 ± 7.02 1.23 ± 0.74

Table 1: Results of experiments in which users were shown target animations and asked to find them using only specific meth-
ods. gallery size is the number of simultaneous animations instances in the interface used. parameters is the number of free
parameters the user was trying to find. sessions is the total number of sessions the scenario was run to collect data. iterations,
animations and error are the mean and standard deviation of the number of interface iterations, the total number of different
animations viewed, and the divergence of the user’s selected parameter values from the target animation, respectively.

Next, we test whether our “real” application — in which
users can restrict ranges and fix parameters in addition to
using a gallery of machine-selected animations — is more
effective than more traditional “parameter twiddling” appli-
cations:

• manual We implemented a single-window GUI with no
machine learning: the user sets all parameters manually.
We distinguished between novices, who have no real un-
derstanding of what the parameters mean, and an expert,
who is very familiar with the procedural animation sys-
tem, and who also has a commanding knowledge of fluid
animation in general.

• 4-gallery + manual This is the full interface, in which all
parameters start off unrestricted, and the user can indicate
preference, and can also restrict the range of any param-
eter, including setting it to a single value. This directly
controls the bounds of the EI maximization, so the next
set of parameters will be in the indicated ranges.

The hyperparameters are again learned with a particle fil-
ter, and the prior mean function is set to zero. We found
that we had to discontinue the initial manual-tweaking ex-
periment. Our first subjects became so frustrated with trying
to set the parameters that they frequently expressed a desire
to give up. The numbers show the results when the experi-
ment was terminated. We include the final results by means
of comparison. We also included a small number of runs for
an expert user who was familiar with the manual interface.
These are shown as manual (expert) in Table 1. We consider
the numbers for the manual tool very unreliable — the sig-
nificant result is that for non-experts, using the gallery made
completing the task feasible at all! With that caveat, though,
we find it interesting that the expert trials with the manual
interface were only slightly better than the non-expert users
using the gallery-plus-manual interface.

5.4 Discovery

To test the effect of learning the mean function, we designed
a “discovery” experiment, where a user has an idea of what
they want, but no ground truth. This also allows us to as-
sess the impact of learning the mean function in a realistic
setting. In this experiment, users (familiar with the system,

but non-experts) are simply asked to have a rough idea in
mind and use the system to find an animation they are satis-
fied with. In the first 15 trials, we used the zero-mean func-
tion. In the second 15, we learned the mean function using
data from the first trials. Users were not told which mean
function they were using. At the end of each session, users
were asked to answer, using a subjective scale of 1–10, the
following questions: (Q1) “how close is your selected ani-
mation to what you had in mind?”; and (Q2) “independent
of how close it was to your target, how much did you like
the selected animation?”. The goal of these two questions
is to measure the effect the mean function had on helping
the user find an instance, and also to determine whether the
trained mean might cause the user to favour instances that
are appealing but not what they were looking for. This could
happen, for instance, if the mean function had too much in-
fluence, biasing the search toward animations it was trained
over exploration.

The results are shown in Table 2. The most dramatic dif-
ference is in the number of iterations required for users to
find a target — from an average of 11.25 to just 6.5. More-
over, the higher responses to Q1 indicate that users were, in-
deed, finding what they were looking for, and were not just
settling for instances suggested due to the mean function.

6 Conclusions

The problem of setting parameters for a procedural anima-
tion system can be treated as one of optimization. However,
as our results have shown, the success of this endeavour de-
pends on the ability to learn the prior mean function and
model hyperparameters. Learning hyperparameters in a sin-
gle user session is impractical, but the nature of the task itself
offers a solution: while each individual session with the ap-
plication might involve different users looking for different
animations, if we treat the hyperparameter-learning problem
as one of state estimation in a hierarchical Bayesian model,
we can use particle filters to make the process automatic.

While we were motivated by a specific animation task, we
see no reason our model could not be extended to other do-
mains, such as physical simulation, texture design and audio,
where continual tuning is required to make something “feel

c© The Eurographics Association 2010.

E. Brochu, T. Brochu & N. de Freitas / Bayesian Optimization for Animation

mean f’n iterations Q1 Q2
zero 11.25 ± 3.60 6.64 ± 1.76 7.00 ± 1.41
trained 6.50 ± 2.15 7.42 ± 1.10 7.36 ± 0.81

Table 2: Comparison of users using the system with a zero
function as the mean, and with a mean trained on previous
user data. Users were asked to think of an animation and
use the system to try to find it. The trained mean function
offers improvement in all metrics, but especially in reducing
the number of iterations of the system.

right” according to an underlying psychoperceptual model.
Particle filter hyperparameter learning is a novel and pow-
erful solution to the problem of setting these difficult values
in data-poor environments. By only updating the distribu-
tion, the model is guided toward good settings without being
overly restricted. The continuous learning and updating en-
sures that the more the gallery application is used, the better
it will become at meeting the needs of its users, even if those
needs change over time.

Finally, user expertise is a valuable resource, and if a
user knows the ranges or exact value of a parameter, or if
they wish to use conventional “slider twiddling” as part of
their workflow, it is important that our tool not interfere. We
present a framework in which our techniques can be used in
conjunction with existing methods.

References

[AN05] ANGELIDIS A., NEYRET F.: Simulation of smoke based
on vortex filament primitives. In ACM-SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA) (2005).

[BdFG07] BROCHU E., DE FREITAS N., GHOSH A.: Active pref-
erence learning with discrete choice data. In Advances in Neural
Information Processing Systems 20 (2007).

[BGdF07] BROCHU E., GHOSH A., DE FREITAS N.: Preference
galleries for material design. In ACM SIGGRAPH 2007 Posters
(2007), p. 105.

[BHN07] BRIDSON R., HOURIHAM J., NORDENSTAM M.:
Curl-noise for procedural fluid flow. ACM Transactions on
Graphics 26, 3 (2007), 46.

[Bis06] BISHOP C. M.: Pattern Recognition and Machine Learn-
ing. Springer-Verlag, 2006.

[CG05] CHU W., GHAHRAMANI Z.: Preference learning with
Gaussian processes. In Proc. 22nd International Conf. on Ma-
chine Learning (2005).

[DdFG01] DOUCET A., DE FREITAS N., GORDON N.: Sequen-
tial Monte Carlo Methods in Practice. Statistics for Engineering
and Information Science. Springer, 2001.

[HANZ06] HUANG D., ALLEN T. T., NOTZ W. I., ZHENG N.:
Global optimization of stochastic black-box systems via sequen-
tial Kriging meta-models. J. of Global Optimization 34, 3 (March
2006), 441–466.

[JPS93] JONES D. R., PERTTUNEN C. D., STUCKMAN B. E.:
Lipschitzian optimization without the Lipschitz constant. J. Op-
timization Theory and Apps 79, 1 (1993), 157–181.

[JSW98] JONES D. R., SCHONLAU M., WELCH W. J.: Efficient
global optimization of expensive black-box functions. J. Global
Optimization 13, 4 (1998), 455–492.

[KYJF04] KUANG J., YAMAGUCHI H., JOHNSON G.,
FAIRCHILD M.: Testing HDR image rendering algorithms. In
Proc. IS and T/SID 12th Color Imaging Conference (2004).

[LCTS05] LEDDA P., CHALMERS A., TROSCIANKO T., SEET-
ZEN H.: Evaluation of tone mapping operators using a high dy-
namic range display. ACM Transactions on Graphics 24, 3 (Au-
gust 2005), 640–648.

[Liz08] LIZOTTE D.: Practical Bayesian Optimization. PhD the-
sis, University of Alberta, Edmonton, Alberta, Canada, 2008.

[MAB∗97] MARKS J., ANDALMAN B., BEARDSLEY P. A.,
FREEMAN W., GIBSON S., HODGINS J., KANG T., MIRTICH
B., PFISTER H., RUML W., RYALL K., SEIMS J., SHIEBER
S.: Design galleries: A general approach to setting parameters
for computer graphics and animation. Computer Graphics 31
(1997).

[McF01] MCFADDEN D.: Economic choices. The American Eco-
nomic Review 91 (2001), 351–378.

[Mos51] MOSTELLER F.: Remarks on the method of paired com-
parisons: I. the least squares solution assuming equal standard
deviations and equal correlations. Psychometrika 16 (1951), 3–
9.

[NDM06] NGAN A., DURAND F., MATUSIK W.: Image-driven
navigation of analytical BRDF models. In Eurographics Sym-
posium on Rendering (2006), Akenine-Möller T., Heidrich W.,
(Eds.).

[PBJ93] PAYNE J. W., BETTMAN J. R., JOHNSON E. J.: The
Adaptive Decision Maker. Cambridge University Press, 1993.

[RW06] RASMUSSEN C. E., WILLIAMS C. K. I.: Gaussian
Processes for Machine Learning. MIT Press, Cambridge, Mas-
sachusetts, 2006.

[Sas02] SASENA M. J.: Flexibility and Efficiency Enhancement
for Constrained Global Design Optimization with Kriging Ap-
proximations. PhD thesis, University of Michigan, 2002.

[SF93] STAM J., FIUME E.: Turbulent wind fields for gaseous
phenomena. In SIGGRAPH ’93 (1993), pp. 369–376.

[She71] SHEKEL J.: Test functions for multimodal search tech-
niques. In 5th Princeton Conf. on Information Science and Sys-
tems (1971).

[SRF05] SELLE A., RASMUSSEN N., FEDKIW R.: A vortex par-
ticle method for smoke, water and explosions. ACM Transactions
on Graphics 24, 3 (2005), 910–914.

[SWJ98] SCHONLAU M., WELCH W. J., JONES D. R.: Global
versus local search in constrained optimization of computer mod-
els. Lecture Notes-Monograph Series 34 (1998), 11–25.

[SWN03] SANTNER T. J., WILLIAMS B., NOTZ W.: The Design
and Analysis of Computer Experiments. Springer, 2003.

[TGY∗09] TALTON J. O., GIBSON D., YANG L., HANRAHAN
P., KOLTUN V.: Exploratory modeling with collaborative design
spaces. In Proc. 2nd Annual ACM SIGGRAPH Conf. and Exhi-
bition in Asia (2009).

[Thu27] THURSTONE L.: A law of comparative judgement. Psy-
chological Review 34 (1927), 273–286.

[WH91] WEJCHERT J., HAUMANN D.: Animation aerodynam-
ics. In SIGGRAPH ’91 (New York, NY, USA, 1991), ACM,
pp. 19–22.

c© The Eurographics Association 2010.

